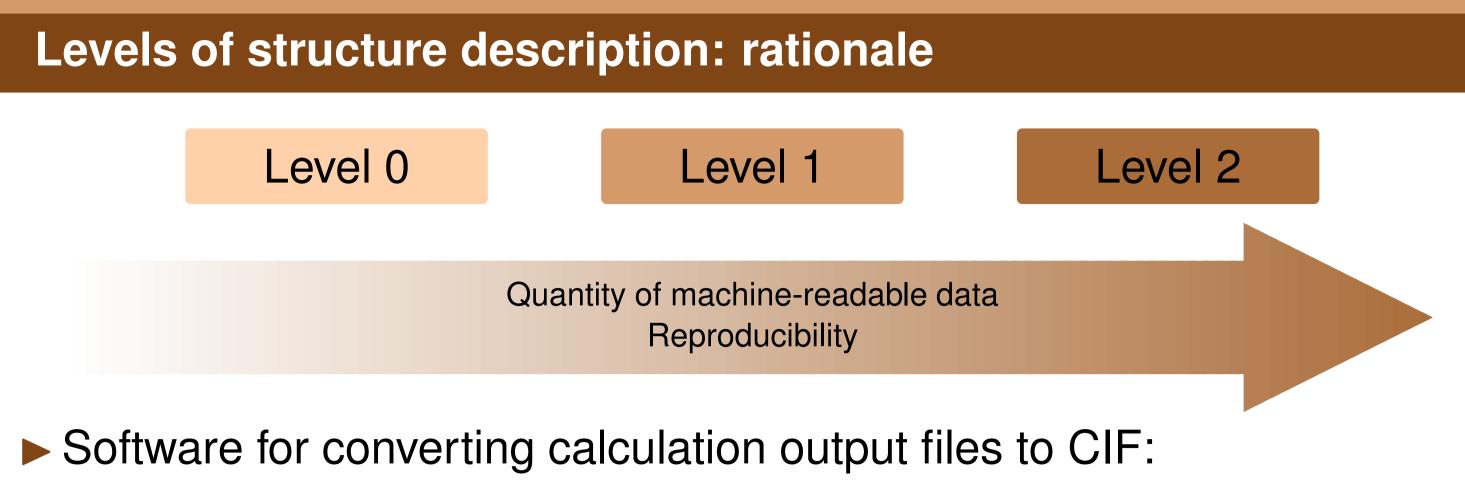


JD SIMULATIO

Theoretical Crystallography Open Database – open-access repository of theoretically computed crystal structures

Andrius Merkys^{a,b}, Giovanni Pizzi^a, Nicola Marzari^a and Saulius Gražulis^b



DE MATERIALS

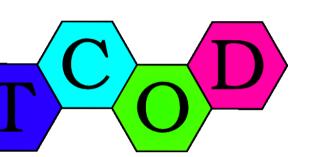
^aTheory and Simulation of Materials (THEOS) and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ècole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; ^bDepartment of Protein-DNA Interactions, Vilnius University Institute of Biotechnology, V. A. Graičiūno 8, LT-02241 Vilnius, Lithuania

Abstract

Unprecedented developments of electronic structure methods, the increase of computer power and the decrease of the price/performance ratio brought about the era of high-throughput crystal structure optimization and property calculation. The Theoretical Crystallography Open Database (TCOD) [1] has been launched in order to collect the results of calculations, performed by the plethora of theoretical calculation groups, into an open-access resource. TCOD, together with the large set of experimental structures in the Crystallography Open Database (COD) [2], opens the possibility for experimental-theoretical data cross-validation. To ensure the homogeneity of calculation results, ontologies are offered in the form of Crystallographic Information Framework (CIF) format [3] dictionaries. Here we present the structure of the TCOD, its CIF dictionaries, and discuss the ongoing efforts for the integration of TCOD with the AiiDA framework [4, 5].

AiiDA (http://www.aiida.net) – level 0, is being extended to 2 vasp2cif (http://github.com/egplar/vasp2cif) - level 0

COD & TCOD


- ► COD, http://www.crystallography.net/cod/
- Largest to date curated open-access collection of small to medium sized unit cell crystal structures;
- Harvests data from open journals, accepts depositions via automatic data submission site;
- Performs routine automatic quality checks on all incoming structures.
- > TCOD, http://www.crystallography.net/tcod/
 - An open-access resource of theoretical calculation results;
 - Based on the infrastructure of the COD;
 - Stores supplementary material of published research as well as prepublication and personal communication material;
 - Aims to save metadata for data provenance and reproducibility.

Dictionaries

- Aim at automated checks for convergence, computational quality and reproducibility;
- \blacktriangleright Enable automated deposition and data mining;

Crystallography Open Database

Theoretical Crystallography Open Database

AiiDA

- AiiDA Automated Interactive Infrastructure and Database for Atomistic simulations, http://www.aiida.net
- An engine for automation of calculations and storage of full data provenance;
- Employs a high-level plugin interface;
- Support extendable to all command line interface-based codes;
- ► Four pillars of AiiDA infrastructure:

ADES			
Ţ			ļ
Automation	Data	Environment	Sharing
Remote management Repository pipelines High-throughput	Storage Database Provenance	High-level workspace Scientific workflows Data analytics	Social Reusability Standards
Abstract away the low-level tasks to manage preparation, submission and processing of calculations	Management and persistence of the data produced by the simulations; database search and querying; simulation reproducibility	Natural, high-level environment for computational research; usable platform with shallow learning curve	Social ecosystem to foster interaction, share codes, data and scientific workflows, using standardized data formats

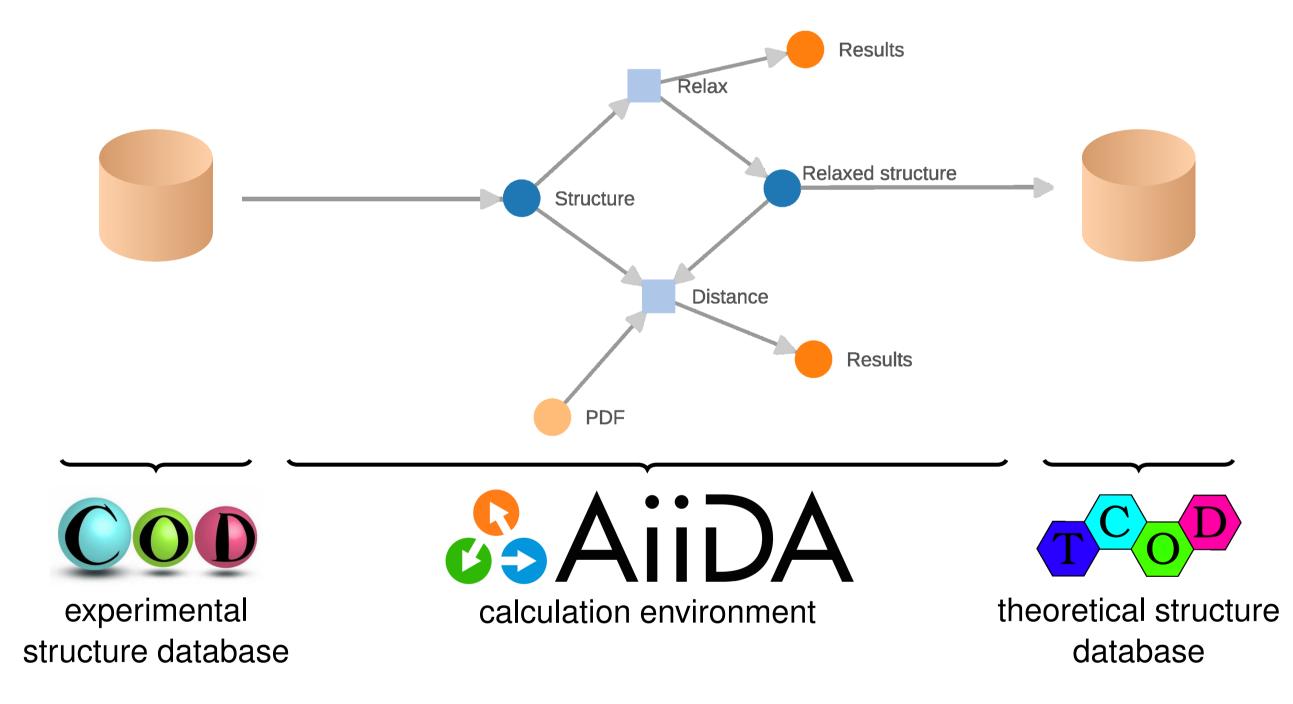
Accessible at:

Ve

Ve

- ► Main TCOD dictionary (all _tcod_* tags):
- http://www.crystallography.net/tcod/cif/dictionaries/cif_tcod.dic
- > svn://www.crystallography.net/tcod/cif/dictionaries/cif_tcod.dic
- ► DFT dictionary (all _dft_* tags):
- http://www.crystallography.net/tcod/cif/dictionaries/cif_dft.dic > svn://www.crystallography.net/tcod/cif/dictionaries/cif_dft.dic
- Open mailing list for discussions:
 - http://lists.crystallography.net/cgi-bin/mailman/listinfo/tcod

Levels of structure description


Iattice and symmetry

- _cell_length_{a,b,c}
 _cell_angle_{alpha,beta,gamma} _symmetry_space_group_name_{H-M, Hall}
- atomic coordinates _atom_site_fract_{x,y,z}
- bibliography reference _journal_{name_full,paper_doi}

computational setup & parameters

_tcod_software_{package,compiler,library} _tcod_software_runtime_{CPU,OS} _dft_{XC_functional, basisset, pseudopotential}_type

Integration of TCOD and AiiDA

► TCOD + AiiDA:

- Direct export of calculation results generated by any of the supported codes;
- Automatic generation of level 2 structure descriptions.

Conclusions

- CIF format proves to be flexible for description of theoretically calculated structures at any level of detail;
- Integration with AiiDA makes collection of metadata for preserving the data provenance straightforward.

residual forces on atoms and cell _tcod_atom_site_residual_force_fract_{x,y,z}

code-specific convergence criteria _dft_cell_{energy, density, potential}_conv

input scripts and files

_tcod_file_{name,URI,contents,role,interpreter}

command line

_tcod_computation_{command,environment}

output logs of the code

_tcod_computation_{log_file, stdout, stderr}

Bibliography

- [1] Gražulis et al. Theoretical crystallography open database, 2013. http://www.crystallography.net/tcod/.
- [2] Gražulis et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. *Nucleic Acids Research*, 40(D1):D420–D427, Jan 2012.
- [3] Hall et al. The crystallographic information file (CIF): a new standard archive file for crystallography. Acta *Crystallographica Section A*, 47(6):655–685, Nov 1991.
- [4] Marzari et al. AiiDA: Automated Interactive Infrastructure and Database for Atomistic simulations, 2012. http://www.aiida.net.
- [5] Pizzi et al. AiiDA: an Infrastructure for Computational Material Science. To be published.

This research is funded by the SCIEX Fellowship grant No. 13.169

Online version of the poster: http://j.mp/1GBo8kb

