

## Crystallography Open Database for teaching

Saulius Gražulis Andrius Merkys Antanas Vaitkus

Hyderabad, 24th IUCr Congress, 2017

Vilnius University Institute of Biotechnology





This work is licensed under a Creative Commons Attribution 4.0 International License





### Crystallography Open Database

Largest open-access resource on chemical crystallography



http://www.crystallography.net/

- ► Total >**380 000** records:
- Grows about 30-50 thous. records/year;

### COD persistence

COD is on-line since 2003, growing all the time.



### COD accessibility

COD is a **fully open-access database**. All records are available under public domain designation.

Every crystallographer can contribute data to COD (and many do ;).

Provided access methods are:

- Web search
- URLs constructed from stable identifiers
- RESTful interfaces
- Full data download



# Use of COD for teaching crystallography

We can and may use COD for teaching in following ways:

- as a source of crystallographic information to illustrate concepts of crystallography;
- as a programmatically accessible resource to teach data processing and management skills on real-life sized repositories;
- as an goal in itself students can participate in COD co-development;



### 3D printing of models

Use COD to produce 3D Virtual reality descriptions and to eventually make 3D printed models [Kaminsky et al., 2014, Gražulis et al., 2015]:







### Personal story: Andrius Merkys

- Defended his BSc in Bioinformatics (Vilnius University), designed and implemented data deposition interface for the Crystallography Open Database;
- Defended master thesis with honours (Vilnius University), providing the Crystallography Open Database as a source of data for MM model refinement:
- ► Part of results published together with the group of Garib Murshudov [Long et al., 2017];



### Models in the COD geometry browser

http://www.crystallography.net/geometry/cgi-bin/histogram.pl?class\_id=3313-3313-3313

Search order by class name (ascending) order by observation count (descending)

Distribution of c(cCH)2(H) - c(cCH)2(H) - c(cCH)2(H) angles



Columns (approx.): 212 Width (in pixels): 800 Download as image



### Personal story: Antanas Vaitkus

- Defended his BSc in Bioinformatics (Vilnius University), on the analysis of interatomic distance distributions in the COD;
- Defended his master thesis (with highest evaluation) on the analysis of metal coordination sphere geometries in COD;
- Works on the PhD thesis; topic: extraction of chemical knowledge from open Web resources and linking them with the COD;



## Comprehension of chemical information

cif\_molecule



cif2molecule



Open Babel



[Cu+2]([Cl-])([Cl-])([Cl-])[Cl-].O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(cc1)[NH3+])C.O=C(c1ccc(

Work done with Thomas Sander using his F/LOSS libraries at Actelion



### Personal story: Mélanie Lailler

- Engineer in training at ISTP, in Saint-Etienne (France);
- Visited Vilnius University for 2 months as a part of her internship program;
- ▶ In the 2 months, using the open EuropePMC resource, covered software development topics:
  - version control (Subversion);
  - software testing using Make, unite tests, test coverage;
  - software release cycle management;
  - wrote and released a finished program that is planned to be used further for data management int COD and ROD;



## Raman spectra and mineral structures in literature

Automated searches in the open-access EuropePMC resource:





### SOLSA project and COD



#### COD will be used in SOLSA for:

- mineral identification;
- subsequent data dissemination.

SOLSA data flow diagram courtesy Monique Le Guen, ERAMET.



#### Contributions of students

- ► A.V.: design of the CIF dictionaries for Raman, IR, Hyperspectral image databases;
- ► A.M.: launching and curation of the ROD, HOD and spectral databases;
- M.L.: performed a literature search for potential publications with Raman spectra and crystal structures useful for mineral identification;



### Acknowledgements

VU Institute of Biotechnology

Antanas Vaitkus

COD Advisory board

Daniel Chateigner

Virginijus Siksnys Robert T. Downs

(head of the dept.) Werner Kaminsky

Armel Le Bail

Andrius Merkys Luca Lutterotti

Peter Moeck

Peter Murray-Rust

Miguel Quirós

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 689868.



### Thank you!



Rob Lavinsky, iRocks.com – CC-BY-SA-3.0, Diopside-172005 CC BY-SA 3.0



http://www.crystallography.net/1000007.html

### References

Gražulis, S., Sarjeant, A. A., Moeck, P., Stone-Sundberg, J., Snyder, T. J., Kaminsky, W., Oliver, A. G., Stern, C. L., Dawe, L. N., Rychkov, D. A., Losev, E. A., Boldyreva, E. V., Tanski, J. M., Bernstein, J., Rabeh, W. M., and Kantardjieff, K. A. (2015).

Crystallographic education in the 21st century.

Journal of Applied Crystallography, 48(6):1964–1975.

Kaminsky, W., Snyder, T., Stone-Sundberg, J., and Moeck, P. (2014). One-click preparation of 3d print files (\*.stl, \*.wrl) from \*.cif (crystallographic information framework) data using cif2vrml. *Powder Diffraction*, 29:S42–S47.

Long, F., Nicholls, R. A., Emsley, P., Gražulis, S., Merkys, A., Vaitkus, A., and Murshudov, G. N. (2017).

ACEDRG: A stereo-chemical description generator for ligands.

Acta Crystallographica Section D, 73(2):112–122.