

The use of interconnected open data for material identification Antanas Vaitkus^a, Andrius Merkys^a, Yassine El Mendili^b and Saulius Gražulis^a

^aVilnius University Institute of Biotechnology, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania ^bNormandie Université, CRISMAT-ENSICAEN, UMR CNRS 6508, Université de Caen Normandie, 14050 Caen, France

Introduction

main driving forces behind modern day scien-One of the tific research is openness. As a result, open-access data repositories play an increasingly important role in the scien-The Crystallography Open Database (COD, tific community. http://www.crystallography.net/cod) [1] is one such resource - over the last 15 years it has become the largest curated and validated open-access collection of inorganic and non-polymeric organic crystal structures encompassing over 390 000 entries. More than 160 000 of these entries have been enhanced by manually adding the SMILES descriptors and as a result enabling the substructure search within the given subset. Recently, a number of computer programs capable of automatically determining stoichiometrically [2] and chemically sound molecules from the crystallographic data have also been developed; this, in turn, enabled the automated generation of structural formulae descriptors and eased the establishment of cross-links between the COD and other open-access resources such as PubMed, DrugBank and Wikipedia. New strides have also been made in relating spectral data to their corresponding crystal structures. The COD was chosen as the back-end database in the wide scale on-site sample analysis of the "Sonic Drilling coupled with Automated Mineralogy and chemistry On-Line-On-Mine-Real-Time"

Raman Open Database (ROD)

http://solsa.crystallography.net/rod

Open-access;

- Contains Raman spectroscopy data;
- Uses CIF2 [4] as the carrier format;
- Validates input files upon deposition;
- Spectral data is cross-linked with the XRD data in the COD;
- Used in the SOLSA project for material identification.

(SOLSA, http://www.solsa-mining.eu) project that focuses on developing highly efficient, cost-effective and sustainable exploration technologies. Since part of the sample analysis involves material identification via the means of Raman spectroscopy, reference spectra aggregation from various sources was initialised choosing CIF [3, 4] as the homogeneous data carrier format for both XRD and spectral data; this, in turn, stipulated the development of spectroscopy oriented DDLm dictionary [5] and the creation of the Raman Open Database (ROD, http://solsa.crystallography.net/rod). These new developments will allow the SOLSA project to present various aspects of mineral characterization such as Raman spectra, XRD structures and fluorescence data in the COD database in a uniform, computer-readable way.

Crystallography Open Database (COD)

http://www.crystallography.net/cod

- Open-access;
- Contains small-molecule organic, inorganic, and metal-organic crystal structures;
- ▶ Uses CIF [3] as the carrier format;
- Over 390 000 entries.

Chemical information extraction

The Raman spectra and the related crystal structure of hematite. ROD ID 1000001, COD ID 1546383.

Raman Spectroscopy Ontology

- Developed and maintained by an international team of Raman spectroscopy experts;
- Expressed as a DDLm [5] conforming CIF dictionary;
- Latest version available at http://solsa.crystallography.net/rod/cif/dictionaries/cif_raman.dic

Conclusions

- The COD is now enhanced with chemical data and interconnected with other open access resources;
- ► There is a need for a curated set of Raman spectroscopy data;
- CIF2 is suitable format for storing scientific data of all sorts;
- Open access data repositories are a viable alternative to proprietary databases.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 689868.

References

Chemical information in the COD

- Periodically generated from crystallographic data in an automated way using open-source software [6, 2, 7];
- Enables a more efficient substructure search;
- Used to establish cross-links to other resources;
- Available in its entirety as a DataWarrior [8] file at http://www.crystallography.net/dwar

- [1] S. Gražulis et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. *Nucleic Acids Research*, 40(D1):D420–D427, 2012.
- [2] S. Gražulis et al. Computing stoichiometric molecular composition from crystal structures. *Journal of Applied Crystallography*, 48:85–91, 2015.
- [3] S. R. Hall et al. The Crystallographic Information File (CIF): a new standard archive file for crystallography. *Acta Crystallographica Section A*, 47(6):655–685, 1991.
- [4] H. J. Bernstein et al. Specification of the Crystallographic Information File format, version 2.0. *Journal of Applied Crystallography*, 49(1):277–284, 2016.
- [5] N. Spadaccini et al. DDLm: A new dictionary definition language. *Journal of Chemical Information and Modeling*, 52(8):1907–1916, 2012.
- [6] A. Merkys et al. COD::CIF::Parser: an error-correcting CIF parser for the Perl language. *Journal of Applied Crystallography*, 49(1):292–301, 2016.
- [7] OpenChemLib. Open source Java-based chemistry library. https://github.com/Actelion/openchemlib.
- [8] T. Sander et al. DataWarrior: An open-source program for chemistry aware data visualization and analysis. *Journal of Chemical Information and Modeling*, 55(2):460–473, 2015.

Antanas Vaitkus has no conflict of interest. Andrius Merkys has no conflict of interest. Yassine El Mendili has no conflict of interest. Saulius Gražulis has no conflict of interest.

On-line version of the poster: http://j.mp/2vXMfXP

