

Methods for the Determination of Covalent Bonds in Small Molecule Crystals

Eglė Šidlauskaitė^{*a*}, Andrius Merkys^{*b*}

^aDepartment of Mathematical Computer Science, Vilnius University, Vilnius, Lithuania; ^bDepartment of Protein-DNA Interactions, Vilnius University Institute of Biotechnology, Vilnius, Lithuania.

Introduction

Crystallography is able to determine the exact positions of the atoms that constitute crystal structures [1], but cannot capture chemical bonding. Two atoms are considered to be connected by a chemical bond if calculated distance between them is smaller or equal to the sum of their covalent radii. This distance is called covalent bond length.

Removal of values exceeding Van der Waals radius

- Covalent radius of an atom is shorter than its Van der Walls radius;
- Effectiveness of the method can be evaluated by removing values that exceed Van der Walls radius [6] to reduce impact of random distribution;
- ▶ In over 50% of classes calculated covalent radii differ from values in covalent radii tables [2] in less than 0.5 Å.

- Widely used covalent radii tables [2] are derived from data from databases that are not open-access, therefore restrict usage and spread of its data and derived results;
- This issue motivates research for a suitable method for determination of covalent bonds in order to recreate covalent radii tables based on data from an open-access database, e.g. the Crystallography Open Database (COD) [3].

Data from the COD

- ► There are 450 000 entries in COD;
- \blacktriangleright Atom distances from 10000 entries were collected;
- Generated 398 atom distance classes for the research.

Van der Waals gap

Removal of small-proportioned components

Method uses the mixture model that fits the dataset best; Small-proportioned model components are removed; Almost 50% of cases after removal only 2 components remain.

Mo-O distances

- Van der Waals gap separates covalent bond lengths from distances between atoms affected by Van der Waals forces;
- Distances between atoms are not observed in this interval [4];
- Distribution of distances between atoms can be approximated by a two component Gaussian mixture model.

Conclusions

Methodology for automated determination of covalent distance was

Methods

- Generate mixture models with 1 to 10 components;
- Determine the best fitting model per Bayesian Information Criterion [5];
- Determine lowest density region of the model using simplex method.

Two component models

- ► For 19% of classes, 2 component model was best fitting;
- ► For 15% of classes, 2 component model was not generated;
- Random distribution has big impact on determination of Van der Waals gap.

- created;
- The most effective method was determined to be the removal of small-proportioned model components;
- Further analysis on methods to reduce the impact of random distribution on parameters of mixture model components is required.

Bibliography

- [1] Gražulis et al. Computing stoichiometric molecular composition from crystal structures.
- [2] Meng et al. Determination of molecular topology and atomic hybridization states from heavy atom coordinates. Journal of Computational Chemistry, 12(7):891-898, sep 1991.
- [3] Gražulis et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research, 40(D1):D420–D427, Jan 2012.
- [4] Alvarez. A cartography of the van der waals territories.
- [5] Schwarz. Estimating the dimension of a model. *The Annals of Statistics*, pages 461–464, 1978.
- [6] Bondi. van der Waals volumes and radii. The Journal of Physical Chemistry, 68(3):441-451, Mar 1964.