############################################################################## ### CIF submission form for molecular structure report (Acta Cryst. C) ### ### Version: 2.0.2 (6 July 1998) ### ############################################################################## # This is an electronic "form" for submitting a structural paper to Acta Cryst. # Section C as a Crystallographic Information File. Full details of the format # of such files are given in the paper "The Crystallographic Information File # (CIF): a New Standard Archive File for Crystallography" by S. R. Hall, F. H. # Allen and I. D. Brown [Acta Cryst. (1991), A47, 655-685]. # # The current version of the core CIF dictionary is obtainable from # ftp://ftp.iucr.org/pub/cif_core.dic. The current version number is 2.0.1. # A few data names below appear in the 1998 Notes for Authors [Acta Cryst. # (1998), C54, 153-168] but are not yet in an approved dictionary; these # are indicated by the comment 'Not in version 2.0.1'. # # Note that all fields should be numeric or character type EXCEPT those which # are flagged as 'text' - free-form text of any length may be included in # these latter fields provided the text block begins and ends with a semicolon # as the first character of a new line. Note also that the query marks # '?' are significant as placeholders, and should not be deleted where a data # item is not given, UNLESS the accompanying data name is also deleted. # Lines should not exceed 80 characters in length. # # An example file derived from this form and annotated in the 1998 Notes for # Authors may be retrieved as ftp://ftp.iucr.org/pub/example.cif. #============================================================================== data_global #============================================================================== _audit_creation_method 'form.cif (version 2.0)' _journal_data_validation_number ? _journal_date_recd_electronic ? _journal_date_to_coeditor ? _journal_date_from_coeditor ? _journal_date_accepted ? _journal_date_printers_first ? _journal_date_printers_final ? _journal_date_proofs_out ? _journal_date_proofs_in ? _journal_coeditor_name ? _journal_coeditor_code ? _journal_coeditor_notes ; ? ; _journal_techeditor_code ? _journal_techeditor_notes ; ? ; _journal_coden_ASTM ? _journal_name_full ? _journal_year ? _journal_volume ? _journal_issue ? _journal_page_first ? _journal_page_last ? _journal_paper_category ? _journal_suppl_publ_number ? _journal_suppl_publ_pages ? _publ_contact_author_name 'Vincent MAISONNEUVE' _publ_contact_author_address ; Laboratoire des Fluorures - UPRES-A 6010 Facult\'e des Sciences, Universit\'e du Maine, Avenue Olivier-Messiaen, 72085 LE MANS Cedex 9, FRANCE ; _publ_contact_author_phone '(33) 2 43 83 35 61' _publ_contact_author_fax '(33) 2 43 83 35 06' _publ_contact_author_email vincent.maisonneuve@univ-lemans.fr _publ_contact_letter ; Please consider this CIF submission for publication as a full paper in Acta Crystallographica C. The figures and structure factors listings will be sent by normal mailing. ; _publ_requested_journal 'Acta Crystallographica C' _publ_requested_coeditor_name ? _publ_section_title ; [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H, a One-Dimensional Aluminophosphate ; loop_ _publ_author_name _publ_author_address 'S. PHAN THANH' ; Laboratoire des Fluorures - UPRES-A 6010 Facult\'e des Sciences, Universit\'e du Maine, Avenue Olivier-Messiaen, 72085 LE MANS Cedex 9, FRANCE ; 'J. MARROT' ; Institut Lavoisier, IREM, UMR CNRS C 8637, Universit\'e de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats Unis, 75035 Versailles Cedex, FRANCE ; 'J. RENAUDIN' ; Laboratoire des Fluorures - UPRES-A 6010 Facult\'e des Sciences, Universit\'e du Maine, Avenue Olivier-Messiaen, 72085 LE MANS Cedex 9, FRANCE ; 'V. MAISONNEUVE' ; Laboratoire des Fluorures - UPRES-A 6010 Facult\'e des Sciences, Universit\'e du Maine, Avenue Olivier-Messiaen, 72085 LE MANS Cedex 9, FRANCE ; _publ_section_synopsis ; The structure of the title compound, obtained solvothermally at 473 K, has been determined by single-crystal X-ray diffraction. It consists of one-dimensional [AlP~2~O~8~H]^2-^ macroanions, connected each other by pentanediammonium cations. ; _publ_section_abstract ; The structure of the title compound, obtained solvothermally at 473 K, has been determined by single-crystal X-ray diffraction. It consists of one-dimensional [AlP~2~O~8~H]^2-^ macroanions, connected each other by pentanediammonium cations. Contrary to the referred similar compounds with P/Al = 2, the three-dimensionality is mainly obtained via the network of hydrogen bonds. ; _publ_section_comment ; The investigation of the system Al~2~O~3~-H~3~PO~4~-aliphatic diamine-EtOH led to a new one-dimensional aluminophosphate templated by 1,5-diaminopentane. The structure of [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H consists of inorganic chains, formulated [AlP~2~O~8~H]^2-^, separated by organic molecules (Fig. 1, top). The inorganic part is built up from tetrahedral AlO~4~ and PO~4~ units, in which all AlO~4~ vertices are connected. This arrangement forms a corner-shared Al~2~P~2~ four-membered ring, with PO~4~H groups. The Al-O distances, ranging from 1.727 (3) to 1.731 (3) \%A, and the O-Al-O angles, lying between 106.4 (2) and 111.3 (2)\%, are consistent with those found in the mineral Berlinite. On the contrary, the P-O distances vary from 1.490 (3) to 1.539 (3) \%A and from 1.499 (3) to 1.546 (3) \%A for the P1 and P2 phosphate groups respectively. This dispersion is attributable to multiple bond character. 1,5-diaminopentane molecules, which must be protonated to balance the negative charges, ensure the cohesion between inorganic chains via hydrogen bonds. All the protons of ammonium cations are linked to terminal O atoms of PO~4~H group. Owing to N-H...O hydrogen bond lengths for the two amine functions, the N1 terminal group is more anchored to the inorganic chains. Details of the hydrogen bonding are given in Table 2. [H~3~N(CH~2~)~5~NH~3~]^2+^ cations present a bent conformation for a size reason. In this case, the atomic displacement parameters of the carbon atoms are rather large, especially in the central part (atoms C3 and C4) of the molecule (Fig. 2). This situation is the complete opposite of that observed in [H~3~N(CH~2~)~6~NH~3~].AlF~5~ (Phan Thanh, Renaudin & Maisonneuve, 2000) where the diammonium cation exhibits a stretched conformation between (AlF~5~) inorganic chains. In addition, it can be observed in the compound called ULM13 both the bent and stretched conformations for the 1,6-diaminohexane molecules (Renaudin, F\'erey, 1995). Up to now, two types of chain architecture for the one-dimensional aluminophosphates, with a P/Al ratio of 2 in the formulation, have been reported in the literature. The former in [H~3~NCH~2~CH~2~NH~3~].AlP~2~O~8~H (Williams, Xu, Gao, Chen & Xu, 1997) shows a one-dimensional polymer chains consisting of edge-shared Al~2~P~2~ four-membered rings, with pendant PO~4~H side groups. The latter, in [H~3~NCH~2~CH~2~NH~3~].AlP~2~O~8~.H~2~O (Wang, Yu & Pang, 1990), [Et~3~NH].AlP~2~O~8~H~2~ (Jones, Thomas, Xu, Huo, Xu, Cheetham & Bieber, 1990) and [NH~4~][H~3~NCH~2~CH~2~NH~3~].AlP~2~O~8~ (Gao, Chen, Li, Xu, Thomas, Light & Hursthouse, 1996), present a linear arrangement of corner-shared Al~2~P~2~ four-membered rings similar to that [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H. However, the higher size of the diammonium cation in [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H led to a distorted inorganic chain. On one hand, the small size of the organic molecule in these four compounds leads to a three-dimensional organization ensured by a combination of van der Waals forces and hydrogen bonds. On the other hand, in the title compound, the structure accommodates the more significant length of the organic chain by a distortion of the organic part but also of the inorganic chain. Consequently, the three- dimensional character is then obtained mainly by the set of hydrogen bonds (Fig. 1, bottom). It is also noticed that this involves a shortening of the O-H...O distance. The distance passes from 2.641 (2) \%A in [H~3~NCH~2~CH~2~NH~3~].AlP~2~O~8~H to 2.457 (4) \%A in [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H. ; _publ_section_exptl_prep ; [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H was prepared from a starting mixture Aluminum isopropoxide ([(CH~3~)~2~CHO]~3~Al)-H~3~PO~4~-1.5 diaminopentane-EtOH with the molar ratio 1:2:5:100 under solvothermal conditions (473 K, 7 days, autogenous pressure) in a Teflon lined autoclave. The resulting product was filtered and dried in air at 353 K for 1 h. A suitable single crystal was isolated by optical microscopy. The crystal cell of [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H was obtained from long exposure rotation photographs. Systematic extinction conditions lead to P2~1~/n space group. ; _publ_section_exptl_refinement ; The structure was solved by direct methods of the program SHELXS86 (Sheldrick, 1990) and successive refinements and difference Fourier maps using SHELXL93 program (Sheldrick, 1993). For the refinement of hydrogen atoms in the CH~2~ and NH~3~ groups, geometrical restraint conditions were used that implied equal distances and angles to the central atom (AFIX option). H atoms of each CH~2~ and NH~3~ groups were refined with a common isotropic thermal parameter. Fourier map showed a relatively large electron-density peak of 1.36 e \%A^-3^ at distances of 0.94 and 1.28 \%A from H5A and C5 respectively. ; _publ_section_references ; Berger-Hoff, G. (1996). DIAMOND. Visual Crystal Structure Information System, Gerhard-Domagk-Str.1, 53121 Bonn, Germany. Gao, Q., Chen, J., Li, S., Xu, R., Thomas, J. M., Light, M. & Hursthouse, M. B. (1996). J. Solid State Chem. 127, 145-150. Farrugia, L.J. (1997). J. Appl. Cryst. 30, 565. Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheetham, A. K. & Bieber, D. (1990). J. Chem. Soc., Chem. Commun. 1170-1172. Phan Thanh, S., Renaudin, J. & Maisonneuve, V. (2000). Solid State Sciences, in press. Renaudin, J. & F\'erey, G. (1995). J. Solid State Chem. 120, 197-203. Sheldrick, G.M. (1990), Acta Cryst. A46 , 467-473. Sheldrick, G.M. (1993). SHELXL93. Program for the Refinement of Crystal Structures, University of G\"ottingen, Germany. Sheldrick, G.M. (1996). SADABS. University of G\"ottingen, Germany. Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Wang, T., Yu, L. & Pang, W. (1990). J. Solid State Chem. 89, 392-395. Williams, I. D., XU, J., Gao, Q., Chen, J. & Xu, R. (1997). Chem. Commun. 1273-1274. ; _publ_section_figure_captions ; Fig. 1. Projection of [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H along the c-axis showing its one-dimensional character and the bent conformation of the diammonium cation (top) and along the a-axis (bottom). PO~4~ tetrahedra are hatched. Fig. 2. Ortep view (Farrugia, 1997) of pentanediammonium cation in [H~3~N(CH~2~)~5~NH~3~].AlP~2~O~8~H. Displacement ellipsoids are shown at the 50% probability level. ; _publ_section_acknowledgements ; The authors thank Professor M. Leblanc and R. Retoux for useful counsels to this manuscript and Dr T. Loiseau for his help. ; _publ_section_table_legends ; Table 1. Selected bond distances (\%A) and angles (\%) Table 2. Hydrogen-bonding geometry (\%A, \%) ; # -----end-of-data-block----- data_C5H17AlN2O8P2 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety ? _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_formula_sum 'C5 H17 Al N2 O8 P2' _chemical_formula_weight 322.13 _chemical_melting_point ? _chemical_compound_source ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P2~1~/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 7.8783(2) _cell_length_b 10.46890(10) _cell_length_c 16.0680(4) _cell_angle_alpha 90.00 _cell_angle_beta 95.1470(10) _cell_angle_gamma 90.00 _cell_volume 1319.90(5) _cell_formula_units_Z 4 _cell_measurement_temperature 296(2) _cell_measurement_reflns_used 5007 _cell_measurement_theta_min 2.32 _cell_measurement_theta_max 29.83 _exptl_crystal_description 'parallelepiped' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max 0.12 _exptl_crystal_size_mid 0.06 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 1.621 _exptl_crystal_density_method ? _exptl_crystal_F_000 672 _exptl_absorpt_coefficient_mu 0.429 _exptl_absorpt_correction_type 'semi-empirical' _exptl_absorpt_process_details 'SADABS (Sheldrick, 1996)' _exptl_absorpt_correction_T_min 0.844 _exptl_absorpt_correction_T_max 0.978 _exptl_special_details ; 'Blessing, Acta Cryst. (1995) A51 33-38' ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type 'MoK\a' _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device 'Siemens SMART diffractometer' _diffrn_measurement_method '\w scans' _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time 0 _diffrn_standards_decay_% 0 _diffrn_reflns_number 8939 _diffrn_reflns_av_R_equivalents 0.0383 _diffrn_reflns_av_sigmaI/netI 0.0532 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 2.32 _diffrn_reflns_theta_max 29.83 _reflns_number_total 3421 _reflns_number_gt 1901 _reflns_threshold_expression '>2sigma(I)' _computing_data_collection 'Siemens SMART' _computing_cell_refinement 'Siemens SMART' _computing_data_reduction 'Siemens SHELXTL' _computing_structure_solution 'SHELXS-86 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'DIAMOND (Berger-Hoff, 1996)' _computing_publication_material 'Siemens SHELXTL' _refine_special_details ; Refinement on F^2^ for ALL reflections except for 900 with very negative F^2^ or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > 2sigma(F^2^) is used only for calculating R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0573P)^2^+3.0698P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0130(77) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 2521 _refine_ls_number_parameters 167 _refine_ls_number_restraints 4 _refine_ls_R_factor_all 0.1073 _refine_ls_R_factor_gt 0.0584 _refine_ls_wR_factor_all 0.2069 _refine_ls_wR_factor_ref 0.1362 _refine_ls_goodness_of_fit_all 1.055 _refine_ls_goodness_of_fit_ref 1.080 _refine_ls_restrained_S_all 1.370 _refine_ls_restrained_S_obs 1.096 _refine_ls_shift/su_max 0.000 _refine_ls_shift/esd_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_group P1 P 0.55909(13) 0.78402(9) 0.02396(7) 0.0280(3) Uani 1 d . . P2 P 0.09646(13) 1.05563(11) 0.13485(6) 0.0290(3) Uani 1 d . . Al1 Al 0.24723(13) 0.95928(11) -0.02995(7) 0.0246(4) Uani 1 d . . O1 O 0.1684(4) 0.9724(3) 0.0667(2) 0.0379(7) Uani 1 d . . O2 O 0.6564(4) 0.7078(3) -0.0386(2) 0.0373(7) Uani 1 d . . H2 H 0.7123 0.7571 -0.0649 0.056 Uiso 1 calc R . O3 O 0.0882(4) 0.9116(3) -0.1048(2) 0.0381(7) Uani 1 d . . O4 O 0.1982(4) 1.1793(3) 0.1459(2) 0.0467(9) Uani 1 d . . O5 O 0.4005(4) 0.8408(3) -0.0252(2) 0.0435(8) Uani 1 d . . O6 O 0.5116(4) 0.6993(3) 0.0927(2) 0.0466(8) Uani 1 d . . O7 O 0.1067(5) 0.9814(4) 0.2149(2) 0.0521(9) Uani 1 d . . O8 O 0.6701(4) 0.8956(3) 0.0585(2) 0.0398(8) Uani 1 d . . N1 N 0.5653(6) 0.4525(4) 0.1464(2) 0.0438(10) Uani 1 d . . H1A H 0.4934 0.4053 0.1133 0.066 Uiso 1 calc R . H1B H 0.5704 0.5309 0.1254 0.066 Uiso 1 calc R . H1C H 0.5288 0.4565 0.1972 0.066 Uiso 1 calc R . C1 C 0.7372(9) 0.3936(7) 0.1518(5) 0.077(2) Uani 1 d D . H1D H 0.7840 0.4038 0.0984 0.092 Uiso 1 calc R . H1E H 0.7258 0.3028 0.1618 0.092 Uiso 1 calc R . C2 C 0.8618(10) 0.4488(8) 0.2194(5) 0.088(2) Uani 1 d D . H2A H 0.8225 0.4271 0.2732 0.105 Uiso 1 calc R . H2B H 0.9709 0.4071 0.2162 0.105 Uiso 1 calc R . C3 C 0.8903(13) 0.5913(9) 0.2175(5) 0.110(3) Uani 1 d D . H3A H 0.7912 0.6290 0.2395 0.132 Uiso 1 calc R . H3B H 0.9855 0.6077 0.2587 0.132 Uiso 1 calc R . C4 C 0.9232(15) 0.6711(14) 0.1428(8) 0.153(5) Uani 1 d D . H4A H 0.8502 0.6411 0.0950 0.184 Uiso 1 calc R . H4B H 0.8917 0.7587 0.1534 0.184 Uiso 1 calc R . C5 C 1.1025(11) 0.6688(10) 0.1213(5) 0.099(3) Uani 1 d D . H5A H 1.1363 0.5802 0.1162 0.118 Uiso 1 calc R . H5B H 1.1062 0.7081 0.0669 0.118 Uiso 1 calc R . N2 N 1.2290(5) 0.7318(4) 0.1793(3) 0.0439(9) Uani 1 d . . H2C H 1.3301 0.7296 0.1586 0.066 Uiso 1 calc R . H2D H 1.2357 0.6916 0.2283 0.066 Uiso 1 calc R . H2E H 1.1984 0.8127 0.1863 0.066 Uiso 1 calc R . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 P1 0.0276(5) 0.0230(5) 0.0341(6) 0.0016(4) 0.0063(4) 0.0016(4) P2 0.0259(5) 0.0418(6) 0.0193(5) -0.0034(4) 0.0019(4) -0.0018(4) Al1 0.0218(6) 0.0289(6) 0.0233(6) -0.0027(4) 0.0024(4) 0.0004(4) O1 0.041(2) 0.048(2) 0.0262(15) -0.0020(13) 0.0096(12) 0.0047(14) O2 0.036(2) 0.0285(15) 0.049(2) -0.0019(13) 0.0141(13) 0.0033(12) O3 0.0279(15) 0.049(2) 0.037(2) -0.0117(13) -0.0009(12) -0.0003(13) O4 0.042(2) 0.060(2) 0.039(2) -0.016(2) 0.0100(14) -0.019(2) O5 0.036(2) 0.046(2) 0.047(2) -0.0090(14) -0.0034(14) 0.0153(14) O6 0.055(2) 0.032(2) 0.056(2) 0.0116(14) 0.022(2) -0.0010(14) O7 0.060(2) 0.073(2) 0.024(2) 0.0063(15) 0.0098(14) 0.015(2) O8 0.045(2) 0.036(2) 0.038(2) -0.0015(13) 0.0052(13) -0.0117(14) N1 0.067(3) 0.030(2) 0.037(2) -0.003(2) 0.016(2) -0.006(2) C1 0.080(4) 0.070(4) 0.080(5) -0.026(3) 0.000(4) 0.012(3) C2 0.073(4) 0.123(7) 0.067(4) -0.005(4) 0.008(3) -0.002(4) C3 0.097(6) 0.158(10) 0.077(5) -0.002(6) 0.015(4) -0.056(6) C4 0.169(13) 0.130(10) 0.153(12) 0.010(8) -0.024(10) -0.019(9) C5 0.099(6) 0.134(7) 0.063(4) -0.007(4) 0.004(4) -0.075(5) N2 0.041(2) 0.052(2) 0.039(2) 0.012(2) 0.006(2) -0.002(2)